「
素数
」を編集中
ナビゲーションに移動
検索に移動
警告:
ログインしていません。編集を行うと、あなたの IP アドレスが公開されます。
ログイン
または
アカウントを作成
すれば、あなたの編集はその利用者名とともに表示されるほか、その他の利点もあります。
スパム攻撃防止用のチェックです。 けっして、ここには、値の入力は
しない
でください!
上級
特殊文字
ヘルプ
見出し
レベル2
レベル3
レベル4
レベル5
形式
挿入
ラテン文字
ラテン文字拡張
国際音声記号
記号
ギリシア文字
ギリシア文字拡張
キリル文字
アラビア文字
アラビア文字拡張
ヘブライ文字
ベンガル文字
タミル文字
テルグ文字
シンハラ文字
デーヴァナーガリー文字
グジャラート文字
タイ文字
ラオス文字
クメール文字
カナダ先住民文字
ルーン文字
Á
á
À
à
Â
â
Ä
ä
Ã
ã
Ǎ
ǎ
Ā
ā
Ă
ă
Ą
ą
Å
å
Ć
ć
Ĉ
ĉ
Ç
ç
Č
č
Ċ
ċ
Đ
đ
Ď
ď
É
é
È
è
Ê
ê
Ë
ë
Ě
ě
Ē
ē
Ĕ
ĕ
Ė
ė
Ę
ę
Ĝ
ĝ
Ģ
ģ
Ğ
ğ
Ġ
ġ
Ĥ
ĥ
Ħ
ħ
Í
í
Ì
ì
Î
î
Ï
ï
Ĩ
ĩ
Ǐ
ǐ
Ī
ī
Ĭ
ĭ
İ
ı
Į
į
Ĵ
ĵ
Ķ
ķ
Ĺ
ĺ
Ļ
ļ
Ľ
ľ
Ł
ł
Ń
ń
Ñ
ñ
Ņ
ņ
Ň
ň
Ó
ó
Ò
ò
Ô
ô
Ö
ö
Õ
õ
Ǒ
ǒ
Ō
ō
Ŏ
ŏ
Ǫ
ǫ
Ő
ő
Ŕ
ŕ
Ŗ
ŗ
Ř
ř
Ś
ś
Ŝ
ŝ
Ş
ş
Š
š
Ș
ș
Ț
ț
Ť
ť
Ú
ú
Ù
ù
Û
û
Ü
ü
Ũ
ũ
Ů
ů
Ǔ
ǔ
Ū
ū
ǖ
ǘ
ǚ
ǜ
Ŭ
ŭ
Ų
ų
Ű
ű
Ŵ
ŵ
Ý
ý
Ŷ
ŷ
Ÿ
ÿ
Ȳ
ȳ
Ź
ź
Ž
ž
Ż
ż
Æ
æ
Ǣ
ǣ
Ø
ø
Œ
œ
ß
Ð
ð
Þ
þ
Ə
ə
書式設定
リンク
見出し
箇条書き
ファイル
注釈
議論
解説
入力内容
出力結果
斜体
''斜体テキスト''
斜体テキスト
太字
'''太字テキスト'''
太字テキスト
太字かつ斜体
'''''太字かつ斜体'''''
太字かつ斜体
===概要=== この世の中で1番美しいと言われる、数字の羅列のこと(偏見)。 自然数の中に存在しており、2や3や5のように、1と自分自身以外に約数を持たない数の事。また、未だにその規則性は発見されていない。 念の為言っておくが、1は素数じゃないぞ。確かに、「1と自分自身以外の数で割れない」という素数の定義には当てはまる。しかし1を素数と定義してしまうと全ての整数は1と-1の倍数であり、つまり1は全ての自然数の約数となってしまう。そうすると素数は1以外になくなってしまうこれでは素数自体の定義すら矛盾してしまう。このことから数学上の定義に矛盾しないよう1は素数では無い。結局、数学的に都合が悪いからってだけ。 先に「素数の規則性は見つかっていない」と書いたが、素数が無限に続くことは知られている。その証明はユークリッドの『[[原論]]』にも載っている。 === 素数が無限にあることの証明 === まず、素数が有限であると仮定する。もしそうならば、全ての素数に1から番号を振ると、番号はある自然数nで終わるはずである。これらは P1,P2,P3.....Pn の数列として表せる(素数のprime numberからpとした)。 ここで、有限個の素数を全てかけあわせ、1を足した数をNとして考える。すると、 N=P1・P2・P3.....Pn+1 と表すことができる。 この時Nは素数かを考えると、仮定の素数P1,P2,P3.....Pnのいずれでもないため素数では無い。では、NはP1,P2,P3.....Pnのいずれかの素数で割れるはずだが、+1が式の最後にあるためどの素数で割っても必ず1余る。つまり、ある数Nは素数でもなく素数でも割れない。こうした矛盾が発生するのは仮定が正しくないためである。よって、[[背理法]]により素数は無限にあることが分かる。 ちなみにこの証明方法は[[原論]]に表記されている方法で、他にもいくつか証明方法はある。 ===アリストテレス(エラトステネス)の篩=== 古代ギリシャの哲学者アリストテレスが発見した、初歩的な素数の一覧表のこと。 具体的な方法は、 ①自然数の表を作る ②2の倍数、3の倍数、5の倍数、、、というように 次々と素数の倍数を消す と単純かつ初歩的である。しかし現在コンピュータを使い素数を抜き出す場合はこの方法が使われているなど、[[popbob]]がリーマン予想を発見するまでは最も効率的な方法とされている。 ===メルセンヌ素数=== フランスのカトリック教会の修道士[[マルン・メルセンヌ]](1588~1648)の、素数に関する予想。 Nが257以下の時、N=2n-1の式で計算される数が素数になるのはNが2.3.5.7.13.17.19.31.67.127.257の場合である というもの。 ただし、現在は[[リュカ・テスト]]という素数判定式により2の61<sup>2</sup>-1の数でメルセンヌの予想は外れることがわかっている。 ===オイラーの二次式=== スイスの数学者[[レオンハルト・オイラー]](1707~1783)も二次式を用いた素数製造式をいくつも考案した。そのひとつが N=n<sup>2</sup>-n+41 の形で表されるものである。 現在はこの二次式も万能ではないことが分かっているが、n=1~40のとき、この式は成立する。 ===ウィルソンの定理=== ウィルソンの定理とは、 ある整pが、素数かどうかを確かめたいとする。もし、1から(p-1までの数を全て掛け算してるpで割り算した時に、あまりが(p-1)ならば、pは素数である。 というものである。例えば 13という整数は 1・2・3・4・5・6・7・8・9・10・11・12= 479001600=13・36846276,,,12より素数だとわかる。ただ問題は、確かめたい数の大きいと桁があまりにも計算が膨大になってしまうため、絶望的な実用性だということである。 {{foot|ds=そすう|cat=数学}}
編集内容の要約:
WikiWikiへの投稿はすべて、クリエイティブ・コモンズ・ゼロ(パブリックドメイン) (詳細は
WikiWiki:著作権
を参照)のもとで公開したと見なされることにご注意ください。 自分が書いたものが他の人に容赦なく編集され、自由に配布されるのを望まない場合は、ここに投稿しないでください。
また、投稿するのは、自分で書いたものか、パブリック ドメインまたはそれに類するフリーな資料からの複製であることを約束してください。
著作権保護されている作品は、許諾なしに投稿しないでください!
編集を中止
編集の仕方
(新しいウィンドウで開きます)
テンプレート:Foot
(
編集
)
案内メニュー
個人用ツール
ログインしていません
トーク
投稿記録
アカウント作成
ログイン
名前空間
ページ
議論
日本語
表示
閲覧
編集
その他
ソースを編集
履歴表示
検索
案内
メインページ
最近の更新
おまかせ表示
MediaWikiについてのヘルプ
ツール
リンク元
関連ページの更新状況
特別ページ
ページ情報