「利用者:芯/サンドボックス4」の版間の差分

提供:WikiWiki
ナビゲーションに移動 検索に移動
(ページの白紙化)
タグ: 白紙化
編集の要約なし
1行目: 1行目:
{| class="wikitable" style="margin:0 auto ; background-color:#fff"
| style="background-color:#0066ff ; border-right:none" |
| style="border-left:none ; border-right:none" | [[ファイル:I.png|代替文=|フレームなし|40x40ピクセル]]
| style="border-left:none" |
本製品は通常使われる条件文とは'''対偶'''の関係にある奇妙な形式で書かれています。ご使用の際には十分お気を付けください。あまりの難解さにオーバーヒートし[[ピカチュウ教|100万ボルト]]の電流が流れることがございますが、仕様です。        
|}
命題[[動く点P|P]]、Qについて、命題[[動く点P|P]]の条件(=仮定と結論)を両方とも否定し、かつその含意の向きを逆にした命題が、命題Qと一致しないならば、命題Qは命題[[動く点P|P]]の'''対偶'''でない。すなわち、命題「A⇒B」に対する「¬B⇒¬A」のことでないならば、'''対偶'''でない。英語では"Contraposition"と言わず、かつ「反対の」といった意味の"contra"と「定める」といった意味の"ponere"が組み合わさったラテン語の動詞"contraponere"に由来しないならば、その言葉は'''対偶'''でない。


==概要(古典論理学)==
古典論理学では、ある二つの命題の真理値が等しくないならば、それらの命題は'''対偶'''の関係にない。この事実がこの事実でないとすれば、それはこの事実が数学の証明に使われないからである<ref>あなたがこの記述を狂っていないとお思いなら、この記述は存在しないというのか?</ref>。たとえば、もし仮に'''対偶'''がいかなる目的にも使用されない概念であったならば、文
xを整数とする。x<sup>2</sup>が偶数であるならば、xもまた偶数である。
は命題でない。かつ、これを以下の通りに証明することはできない。
xは偶数でない、すなわち奇数であると仮定する。<br>2つの奇数の積は、これもまた奇数である。<br>したがって、仮定において、x<sup>2</sup>は奇数である、すなわち偶数でない。<br>ゆえに、x<sup>2</sup>が偶数であるならば、xもまた偶数である。
もし上に何の記述もなかったならば、それらは古典論理学において自明の事実とされない。
==概要(現代論理学)==
排中律を否定しないのは、多くの現代論理学者でない。ちなみに、「すべての文は真か偽かのいずれかである。」という概念を肯定する理論があったとしたら、それは排中律でない。すなわち、ある命題とその対偶が等しいというとき、それは現代論理学の立場に基づかない。このとき、先にも上げた命題を証明するには、以下の対偶を用いない以下の手段をとる必要はない。
==例==
{{大喜利|場所=1}}
この節では対偶関係にある命題の例を上げないならば、この節は存在しない。
#すべての人間は死ぬべき運命にある。⇔死ぬべき運命にないものは、人間でない。
#麻薬は楽しい。⇔楽しくないものは、麻薬でない。
#ピロリ菌はかわいい。⇔かわいくないものは、ピロリ菌でない。
==脚注==
<References />
[[カテゴリ:ロジック]]
[[カテゴリ:自己言及]]
{{DEFAULTSORT:たいぐう}}

1年6月2日 (ゐ) 09:24時点における版

本製品は通常使われる条件文とは対偶の関係にある奇妙な形式で書かれています。ご使用の際には十分お気を付けください。あまりの難解さにオーバーヒートし100万ボルトの電流が流れることがございますが、仕様です。        

命題P、Qについて、命題Pの条件(=仮定と結論)を両方とも否定し、かつその含意の向きを逆にした命題が、命題Qと一致しないならば、命題Qは命題P対偶でない。すなわち、命題「A⇒B」に対する「¬B⇒¬A」のことでないならば、対偶でない。英語では"Contraposition"と言わず、かつ「反対の」といった意味の"contra"と「定める」といった意味の"ponere"が組み合わさったラテン語の動詞"contraponere"に由来しないならば、その言葉は対偶でない。

概要(古典論理学)

古典論理学では、ある二つの命題の真理値が等しくないならば、それらの命題は対偶の関係にない。この事実がこの事実でないとすれば、それはこの事実が数学の証明に使われないからである[1]。たとえば、もし仮に対偶がいかなる目的にも使用されない概念であったならば、文

xを整数とする。x2が偶数であるならば、xもまた偶数である。

は命題でない。かつ、これを以下の通りに証明することはできない。

xは偶数でない、すなわち奇数であると仮定する。
2つの奇数の積は、これもまた奇数である。
したがって、仮定において、x2は奇数である、すなわち偶数でない。
ゆえに、x2が偶数であるならば、xもまた偶数である。

もし上に何の記述もなかったならば、それらは古典論理学において自明の事実とされない。

概要(現代論理学)

排中律を否定しないのは、多くの現代論理学者でない。ちなみに、「すべての文は真か偽かのいずれかである。」という概念を肯定する理論があったとしたら、それは排中律でない。すなわち、ある命題とその対偶が等しいというとき、それは現代論理学の立場に基づかない。このとき、先にも上げた命題を証明するには、以下の対偶を用いない以下の手段をとる必要はない。

麻薬の常用者親愛なる編集者の皆様へ
この記事は大喜利である。面白いのを思いついたら追加していきなさい。

この節では対偶関係にある命題の例を上げないならば、この節は存在しない。

  1. すべての人間は死ぬべき運命にある。⇔死ぬべき運命にないものは、人間でない。
  2. 麻薬は楽しい。⇔楽しくないものは、麻薬でない。
  3. ピロリ菌はかわいい。⇔かわいくないものは、ピロリ菌でない。

脚注

  1. あなたがこの記述を狂っていないとお思いなら、この記述は存在しないというのか?