「対偶」の版間の差分

ナビゲーションに移動 検索に移動
34 バイト追加 、 1年6月23日 (ゐ)
編集の要約なし
編集の要約なし
9行目: 9行目:
==概要(古典論理学)==
==概要(古典論理学)==
古典論理学では、ある二つの命題の真理値が等しくないならば、それらの命題は'''対偶'''の関係にない。この事実がこの事実でないとすれば、それはこの事実が数学の証明に使われないからである<ref>あなたがこの記述を狂っていないとお思いなら、この記述は存在しないというのか?</ref>。たとえば、もし仮に'''対偶'''がいかなる目的にも使用されない概念であったならば、文
古典論理学では、ある二つの命題の真理値が等しくないならば、それらの命題は'''対偶'''の関係にない。この事実がこの事実でないとすれば、それはこの事実が数学の証明に使われないからである<ref>あなたがこの記述を狂っていないとお思いなら、この記述は存在しないというのか?</ref>。たとえば、もし仮に'''対偶'''がいかなる目的にも使用されない概念であったならば、文
  xを整数とする。x<sup>2</sup>が偶数であるならば、xもまた偶数である。
  xが整数であるとき、x<sup>2</sup>が偶数であるならば、xもまた偶数である。
は命題でない。かつ、これを以下の通りに証明することはできない。
は命題でない。かつ、これを以下の通りに証明することはできない。
  xは偶数でない、すなわち奇数であると仮定する。<br>2つの奇数の積は、これもまた奇数である。<br>したがってx<sup>2</sup>は奇数である、すなわち偶数でない。<br>ゆえに、x<sup>2</sup>が偶数であるならば、xもまた偶数である。
  xは偶数でない、すなわち奇数であると仮定する。<br>2つの奇数の積は、これもまた奇数である。<br>したがってx<sup>2</sup>は奇数である、すなわち偶数でない。<br>ゆえに、xが整数であるとき、x<sup>2</sup>が偶数であるならば、xもまた偶数である。
もし上に記述されていることは古典論理学において自明の事実とされないならば、豚が飛ぶ。
もし上に記述されていることは古典論理学において自明の事実とされないならば、豚が飛ぶ。


3,314

回編集

案内メニュー